Measuring the Galaxy-Galaxy-Mass Three-point Correlation Function with Weak Gravitational Lensing

نویسنده

  • David E. Johnston
چکیده

We discuss the galaxy-galaxy-mass three-point correlation function and show how to measure it with weak gravitational lensing. The method entails choosing a large of pairs of foreground lens galaxies and constructing a mean shear map with respect to their axis, by averaging the ellipticities of background source galaxies. An average mass map can be reconstructed from this shear map and this will represent the average mass distribution around pairs of galaxies. We show how this mass map is related to the projected galaxy-galaxy-mass three-point correlation function. Using a large N-body dark matter simulation populated with galaxies using the Halo Occupation Distribution (HOD) bias prescription, we compute these correlation functions, mass maps, and shear maps. The resultant mass maps are distinctly bimodal, tracing the galaxy centers and remaining anisotropic up to scales much larger than the galaxy separation. At larger scales, the shear is approximately tangential about the center of the pair but with small azimuthal variation in amplitude. We estimate the signal-to-noise ratio of the reconstructed mass maps for a survey of similar depth to the Sloan Digital Sky Survey (SDSS) and conclude that the galaxy-galaxy-mass three-point function should be measurable with the current SDSS weak lensing data. Measurements of this three-point function, along with galaxy-galaxy lensing and galaxy auto-correlation functions, will provide new constraints on galaxy bias models. The anisotropic shear profile around close pairs of galaxies is a prediction of cold dark matter models and may be difficult to reconcile with alternative theories of gravity without dark matter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جستجو در تصاویر عمیق GaBoDs برای یافتن خوشه‌های کهکشانی به روش همگرایی ضعیف گرانشی

The aim of the present work is detection of galaxy clusters based on weak gravitational lensing method. We apply mass aperture statistics method to 0.32 square degrees data obtained with the WFI@MPG/ESO 2.2 m telescope and detect mass peaks based on their mass not the luminosity. So by the application of proper filter function, shear profile and mass map are produced. Finally mass peaks with hi...

متن کامل

The Galaxy-galaxy Lensing Contribution to the Cosmic Shear Two Point Function

We note that galaxy-galaxy lensing by non-spherical galaxy halos produces a net anti-correlation between the shear of background galaxies and the ellipticity of foreground galaxies. This anti-correlation would contaminate the tomographic cosmological weak lensing two point function if the effect were not taken into account. We compare the size of the galaxy-galaxy lensing contribution to the ch...

متن کامل

Angular Cross-Correlation of Galaxies: A Probe of Gravitational Lensing by Large-Scale Structure

The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise due to spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line-of-sight. The lensing contribution to the 2-point auto-correlation function is typically small...

متن کامل

A Method for Weak Lensing Flexion Analysis by the Holics Moment Approach

We have developed a method for measuring higher-order weak lensing distortions of faint background galaxies, namely the weak gravitational flexion, by fully extending the Kaiser, Squires & Broadhurst method to include higher-order lensing image characteristics (HOLICs) introduced by Okura, Umetsu, & Futamase. We take into account explicitly the weight function in calculations of noisy shape mom...

متن کامل

The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations

Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008